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ABSTRACT We carried out a detailed mathematical analysis of the effects of length fluctuations on the dynamically evolving
cross-bridge distributions, simulating those that occur in airway smooth muscle during breathing. We used the latch
regulation scheme of Hai and Murphy (Am. J. Physiol. Cell Physiol. 255:C86–C94, 1988) integrated with Huxley’s sliding
filament theory of muscle contraction. This analysis showed that imposed length fluctuations decrease the mean number of
attached bridges, depress muscle force and stiffness, and increase force-length hysteresis. At frequencies .0.1 Hz, the
bond-length distribution of slowly cycling latch bridges changed little over the stretch cycle and contributed almost elastically
to muscle force, but the rapidly cycling cross-bridge distribution changed substantially and dominated the hysteresis. By
contrast, at frequencies ,0.033 Hz this behavior was reversed: the rapid cycling cross-bridge distribution changed little,
effectively functioning as a constant force generator, while the latch bridge bond distribution changed substantially and
dominated the stiffness and hysteresis. The analysis showed the dissociation of force/length hysteresis and cross-bridge
cycling rates when strain amplitude exceeds 3%; that is, there is only a weak coupling between net external mechanical work
and the ATP consumption required for cycling cross-bridges during the oscillatory steady state. Although these results are
specific to airway smooth muscle, the approach generalizes to other smooth muscles subjected to cyclic length fluctuations.

INTRODUCTION

Load fluctuations are imposed continuously on airway
smooth muscle and pulmonary vascular smooth muscle by
the tidal action of breathing, and on muscular systemic
arteries and arterioles by the pulsatile action of blood
ejected from the heart. Smooth muscles in the urethra,
urinary bladder, and gut are also subjected to periodic
stretch. Imposed fluctuations in muscle load are a universal
part of smooth muscle physiology.

It is well established that imposition of periodic load
fluctuations on smooth muscle inhibits development of ac-
tive force and stiffness (Warner and Gunst, 1992; Gunst et
al., 1990; Fredberg et al., 1997). Although imposed load
fluctuations induce important plastic changes in the cy-
toskeleton (Gunst et al., 1995; Pratusevich et al., 1995), a
major part of the force and stiffness inhibitions that are
observed are attributable to direct effects of tidal stretch
upon bridge dynamics (Fredberg et al., 1997, 1999). With
respect to activation, load fluctuations have little effect on
subsequent post-vibration contraction, and it is unlikely that
changes in load (stress) or length (strain) are responsible for
modifying activation, although this is still unclear (Klemt et
al., 1981; Peiper et al., 1996).

In a previous report we obtained insights into the contri-
bution of bridge dynamics by analyzing the rigid sliding
filament model of muscle contraction of Huxley modified to
include latch regulation and the four myosin states de-

scribed by Hai and Murphy (1988a, b) and Fredberg et al.
(1999). The mathematical synthesis of the ideas of Huxley
with those of Hai and Murphy we refer to as HHM theory
(Fredberg et al., 1999). Here we report a further analysis of
HHM theory and focus in particular on the myosin bond
length distributions. We examined how these distributions
are perturbed by periodic changes of muscle length and how
these distributions lead to changes in muscle mechanics and
in the rate of ATP utilization. These results may help to
explain why airway narrowing is limited in healthy lungs,
but can become excessive in asthmatic lungs.

METHODS

Hai and Murphy (1988a) defined the four-state myosin model to comprise
free unphosphorylated myosin (M), phosphorylated myosin (Mp), phos-
phorylated myosin attached to actin (AMp), and unphosphorylated myosin
attached to actin (AM, also called latch bridges) (Fig. 1A). As in their
work, we assumed that both AMp and AM cross-bridges have the same
stiffness, and that ATP binding is a prerequisite for detachment. The
transitions among the four states are governed by seven rate constants (Fig.
1 A). Implicit in the scheme is that cross-bridges cannot attach to actin
unless they are first phosphorylated, i.e., the muscle is regulated exclu-
sively by Ca21-dependent state transition rate constants,k1 andk6 (which
may vary with time), mediated by calmodulin-dependent myosin light
chain kinase (MLCK). Hai and Murphy also assumed that the affinities of
MLCK and myosin light chain phosphatase (MLCP) for both attached and
detached cross-bridges are similar, i.e.,k1 ' k6 andk2 ' k5.

We assessed the relationship among the time-varying external load,
level of muscle activation, and actomyosin dynamics by computing nu-
merical solutions to the HHM theory. This theory can be written as four
coupled partial differential equations that express conservation of each
myosin species, which in vector form becomes,

Dn~x, t!/Dt 5 T~x, t!n~x, t!. (1)

Each of the four components of the vectorn(x, t) corresponds to the
population fraction of myosin in one of its four states (i.e.,nM (x, t), nMp

(x,
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t), nAMp
(x, t), nAM(x, t)), all of which vary both in time,t, and space,x,

wherex is the position of the active actin site on the actin filament relative
to the equilibrium position of the cross-bridge on the myosin filament
(Huxley, 1957). The operatorD/Dt is the material derivative/t 2
V(t)/x, also called the convective derivative, whereV(t) is the velocity of
the actin filament relative to myosin filament and is traditionally taken to
be positive during shortening. This derivative expresses the time rate of
change in a coordinate system moving (convecting) with the myosin
filament. It contains two distinct terms: first, the independent rate of
change with time at fixed positionx in the laboratory frame, and second,
the rate of change associated with motion of the moving myosin filament
where, due to the presence of spatial gradients, there is a difference in
cross-bridge populations entering and leaving the differential elementdx.

The 4 3 4 rate transition matrixT(x, t) describes the probability of
transitions between these states, and how these probabilities vary with
position of the myosin head. These probabilities are important because,
with any relative movement between actin and myosin filaments, the
myosin head may traverse regions that tend to favor attachment events, and
some others that tend to favor detachment events; the latter dominate where
x is large and or negative (Huxley, 1957). The elements ofT(x, t) include
both the position-independenttransitions between M and Mp and between
AM and AMp (phosphorylation and dephosphorylation of 20 kD myosin
light chain are driven by action of kinases and phosphatases (Hai and
Murphy, 1988a, b)), and position-dependenttransitions between Mp and
AMp and between M and AM (attachment and detachment of myosin to
actin (Huxley, 1957; Hai and Murphy, 1988b)). As such,T(x, t) governs
the transition of chemical events into mechanical events and, importantly,
the converse as well. To setT(x, t), we used the rate functions reported by
Hai and Murphy after adapting them to include the increased rate of
detachment (g3) described by Zahalak (1986) in the regionx . h, whereh
is the range for positive probability of attachment (Huxley, 1957). The rate
transition matrix is:

T~x, t!

5 3
2k1~t! k2 0 g~x!
k1~t! 2k2 2 fp~x! gp~x! 0

0 fp~x! 2k5 2 gp~x! k6~t!
0 0 k5 2k6~t! 2 g~x!

4
(2)

where

fp~x! 5 H0, x , 0
fp1x/h, 0 # x # h

0, h , x

gp~x! 5 Hgp2, x , 0
gp1x/h, 0 # x # h

~gp1 1 gp3!x/h, h , x

g~x! 5 Hg2, x , 0
g1x/h, 0 # x # h

~g1 1 g3!x/h, h , x.
(3)

fp(x) is the position-dependent attachment rate of Mp,gp(x) is detachment
rate of AMp, andg(x) is the detachment rate of AM. The subscriptp
denotes phosphorylated myosin heads. Following Hai and Murphy
(1988a,b), the attachment rate of unphosphorylated myosin (i.e., M3 AM)
is negligible, which accounts for that 0 entry inT. Note also that the
Ca21-dependent transition ratesk1 andk6 to the phosphorylated states are
explicitly shown as potential functions of time. The magnitude of the above

FIGURE 1 (A) Hai and Murphy’s four-state model: the latch regulatory
scheme for Ca21-dependent smooth muscle activation and Huxley’s slid-
ing filament model. A actin (thin filament); myosin cross-bridge states are
M (detached, unphosphorylated); Mp (detached, phosphorylated); AMp
(attached, phosphorylated); AM (attached, unphosphorylated, also known
as the latch bridge).k1–k7 are first-order rate constants from experimental
data (Hai and Murphy, 1988a).k1 and k6 represent Ca21, calmodulin-
dependent myosin light chain kinase (MLCK) activity;k2 andk5 represent
myosin light chain phosphatase (MLCP) activity, wherek5 drives the
rapidly cycling cross-bridges, AMp, to slowly cycling latch bridges, AM.
k3 and k4 are the rate constants for attachment and detachment of phos-
phorylated cross-bridges, andk7 is the rate for latch bridge detachment, all
three dependent on cross-bridge displacements (x) through scaled Huxley’s
attachment and detachment (spatially distributed) rates.h: range of dis-
placements over which myosin has a positive binding rate. (B) Conserva-
tion of the number of cross-bridges: the attachment region R is defined to
be the interval 0, x , h, wherefp is positive;j is a local coordinate of the
actin site available in R;,a is the distance between actin sites (shown as
semi-transparentsolid line boxes). Left: Isometric case—an available my-
osin head corresponds to a detached cross-bridge.Right: After lengthening,
some myosin heads are drawn away (convected out) from the attachment
region while still attached (right lower panel), and at the same time some
unoccupied actin sites are moved within R (convected in). Semi-transpar-
ent dashed line boxes represent some actin sites before lengthening, while
solid line boxes represent actin sites after lengthening.
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rate-dependent cross-bridge constants, defined byfp1, gp1, and g1, are
chosen to match Murphy’s position-independent state transition rate con-
stants,k3, k4, andk7, respectively, when relations (3) are averaged overx.
Specifically, the linear character of the rate constants within 0# x # h
implies, for example, that the average offp(x) is simply fp1/2. Thus we take
fp1 5 2k3; gp1 and g1 are evaluated similarly. Finally, we evaluated the
other time constants to begp2 5 4(fp1 1 gp1) andg2 5 20 g1 as defined in
Huxley (1957), andgp3 5 3gp1 andg3 5 3g1 as defined in Zahalak (1986).

Conservation of the number of cross-bridges
(myosin heads)

Huxley (1957) assumed that for every unoccupied actin site there is always
an available myosin head, and also that only one myosin head per cross-
bridge can attach at any instant of time. Thus, an available myosin head
corresponds to a detached cross-bridge. This is correct for the isometric
case, but when shortening or lengthening is allowed, some myosin heads
are drawn away from the attachment region R (defined to be the interval
0 , x , h, wherefp is positive) while still attached, and at the same time
some unoccupied actin sites are moved within R (Fig. 1B). In order to
satisfy Huxley’s original assumption, the attached myosin head that was
convected outside R (i.e., physically moved outside that region), cannot
attach to the actin site within R until that myosin head detaches. To correct
for this, following the work of Piazzesi and Lombardi (1995), we specify
that a myosin cross-bridge, which repeats along the filament axis with a
periodicity of ,m, can attach only to one actin site within R. We definej

as a local coordinate of the actin site available in R (thus 0, j , h). We
also assume that after detachment a cross-bridge rapidly (of order of tens
of microseconds) regains its original configuration, thus the myosin head
can reattach to one actin site in R, and therefore all detached statesnM(j,
t) and nMp

(j, t)) are also only in R. This condition ensures that the total
number of myosin species is conserved. During lengthening or shortening,
the attached myosin heads convect out of R, decreasing the number of actin
sites available for the attachment in R. Thus, the requirement that the sum
of the probabilities over all possible states translates, for allj, to the
condition:

nMp~j, t! 1 nM~j, t!

1 O
m

@nAMp~j 1 m,a, t! 1 nAM~j 1 m,a, t!# 5 1,

where,a is the distance between actin sites (conveniently assumed to be
equal toh), andm indexes the actin lattice, with spatial period,a.

Numerical solution

The vectorn(x, t) is obtained by solving Eq. 1 numerically using the
method of characteristics described earlier (Mijailovich et al., 1996). Spe-
cifically, integrations were performed with 1000 time steps per cycle and
with 800 length steps perh. The instantaneous force was computed from
the first spatial moment of the attached cross-bridge state number distri-
bution nAMp

(x, t) 1 nAM(x, t), integrated over allx. Similarly, the instan-
taneous state population fractions, denoted M(t), Mp(t), AMp(t), and
AM(t), were computed from the zeroth spatial moment of the number state
distributions. In steady state,^M&, ^Mp&, ^AMp&, and ^M& denote the
respective average values over one period. During isometric force devel-
opment instantaneous force is explicitly computed fromn(x, t).

The rate of ATP consumption was separately computed for each of the
four transition processes indicated in Fig. 1:

the detachment of Mp from AMp:

E
2`

`

gp~x!nAMp~x, t!dx/h,

the detachment of M from AM:

E
2`

`

g~x!nAM~x, t!dx/h,

the phosphorylation of M:

k1~t! E
2`

`

nM~x, t!dx/h,

and the phosphorylation of AM:

k6~t! E
2`

`

nAM~x, t!dx/h.

The total ATP consumption rate (denoted ATPtot in the figures) is the sum
of these four terms. The cyclic rate of ATP consumption (denoted ATPcycl

in the figures) is designated as that component associated only with bridge
detachments, i.e., the sum of the first two terms above. In particular, in
steady state, the average (over one period) cross-bridge cycling rate is
proportional to the average ATPcycl. Average fractional phosphorylation of
myosin was calculated as^Mp& 1 ^AMp&. Similarly, the average myosin
duty cycle is given bŷAMp& 1 ^AM &.

Initial conditions

We assumed that all cross-bridges were in the detached unphosphorylated
state in relaxed tissue, i.e.,nM(x, 0) 5 1, x [ R; the other population
fractions being zero. Initially we takek1 5 k6 5 0, corresponding to a
[Ca21] below the threshold for MLCK activation (Hai and Murphy,
1988a).

Loading conditions, time averaging, and
dynamic moduli

We considered isometric force development at optimal length,L0, and
sinusoidal length variations about the optimal length,L(t) 5 L0 1 DL sin
2pft, whereDL is the stretch amplitude andf is frequency. Muscle acti-
vation is taken into account by setting the phosphorylation rate constants
k1(t) andk6(t) to mimic the initial Ca21 transient during force development
(Hai and Murphy, 1988a). The mean values of force, stiffness, and ATP
consumption were calculated by time-averaging their instantaneous values
over the tidal stretch cycle. From closed force-length loops (see Note 1 at
end of text) the values of muscle elastance,E, and hysteresivity,h, were
computed on a loop-by-loop basis in the following manner. IfD is energy
dissipated through external work per period of imposed cyclic stretch (i.e.,
area within the force-length loop) andDF is the amplitude of phasic force
variation aboutF, then we use the following relations, which remain useful
even when the loop becomes non-elliptical, which is indicative of nonlinear
mechanical behavior (Fredberg and Stamenovic, 1989; Fredberg et al.,
1996, 1997),E 5 (DF/DL) cos f, andh 5 tan f, wheref 5 sin21(D/
pDFDL). Force (instantaneous and mean), stiffness (instantaneous and
mean), andE (only defined over a cycle) were normalized to the force,
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stiffness, and stiffness, respectively, under fully developed isometric con-
ditions at 100% phosphorylation.

The numerical parameter values used in simulations were as follows.
The state transition constants for airway smooth muscle, adapted from Hai
and Murphy (1988a), werek1(t) 5 k6(t) 5 (0.35s21, 0 , t , 5 s; and 0.060
s21, 5 s, t), k2 5 k5 5 0.1 s21, k3 5 0.44 s21, k4 5 k3/4 5 0.11 s21, k7 5
0.005 s21. The attachment and detachment rate constants of the Huxley
schemefp1, gp1, andg1, are taken to be twicek3, k5, andk7, respectively,
in order to approximately preserve the average values of the latter during
force development (see Note 2), namelyfp1 5 0.88 s21, gp1 5 0.22 s21,
g1 5 0.01 s21. The other constants, related tox , 0, aregp2 5 4(fp1 1
gp1) 5 4.40 s21 andg2 5 20gp1 5 0.20 s21 (this proportion is originally
defined by Huxley, 1957, and slightly adjusted by Hai and Murphy, 1988
b), and related tox . h aregp3 5 3gp1 5 0.66 s21 andg3 5 3g3 5 0.03
s21 (Zahalak, 1986). The remaining parameters in the problem were taken
to be 1) crossbridge strain is 36% of overall strain to account for the serial
elastic component (Mijailovich et al., 1996); 2) the myosin distortion
displacement scale (h) is 15.6 nm (Huxley, 1957); and 3) the sarcomere
length is 2.2mm (Hai and Murphy, 1988b). For scaling purposes, note that

a crossbridge displacement of magnitudeh corresponds to a whole muscle
strain of;« 5 DL/L0 5 4%.

RESULTS AND DISCUSSION

Bond length distributions during isometric
force development

Fig. 2 shows the evolution of the bond distributions of the
attached myosin populations, AMp and AM, during isomet-
ric force development. Before activation all myosin mole-
cules are found in the unphosphorylated unattached pool
(M); this pool becomes rapidly depleted with stimulus on-
set, however, as myosin molecules become phosphorylated
and then attach to the actin filament forming the species
AMp. During this early period of isometric force develop-

FIGURE 2 The evolution of the bond distributions
during isometric force development of the phosphory-
lated and unphosphorylated attached myosin popula-
tions, AMp (dashed line), and AM (solid line) at four
distinctive times; during the early Ca21 transient (1 and
5 s, panelsA and B), and at later times during force
development, characteristic of the formation of the
“latch state” (16 and 180 s, panelsC andD).
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ment, the spatial distribution ofnAMp
(x, t) is roughly linear

in x, and corresponds closely to the linear spatial depen-
dence of the attachment rate function in the region 0, x , h
(Fig. 2 A). As time passes,nAMp

(x, t) becomes more spa-
tially uniform, however, as attachment and detachment
events approach a rough balance (Fig. 2,B–D). This balance
is first achieved at positions close tox 5 h, wherefp(x) and
gp(x) are the largest (seedashed linein Fig. 2 B). As time
passes, this equilibration process propagates toward smaller
x, where rate constants are slower (Fig. 2C). In the steady
state,nAMp

(x, t) approaches a limit that is approximately
(but not exactly) constant withx (Fig. 2 D).

The AM pool is the last to be populated, because it can
grow only from the developing AMp pool. At short times
(t , 1 s) nAM(x, t) is small compared tonAMp

(x, t), then
gradually increases. From the onset of contraction up to
;16 s, thenAM(x, t) is ,nAMp

(x, t), but has a roughly similar
shape due to the fact that the AMp3 AM transition is
independent ofx. The two distributions are approximately
equal at;16 s (Fig. 2C). At later stages of force develop-
ment, the distributions approach their respective steady
states (Fig. 2D), and the population of the AM pool exceeds
that of the AMp for allx.

The bond length distributions of AMp and AM in the
isometric steady state (Fig. 2D) correspond to a static
equilibrium of myosin binding and is what Hai and Murphy
called the “latch state.” In this isometric steady state the
distribution ofnAM(x, t) is clearly nonuniform. The reason
for this nonuniformity can be understood by considering a
mass balance of the AM species. Flux of molecules into the
AM pool arises from dephosphorylation of AMp, but that
transition rate is independent of positionx. The net flux of
molecules out of the AM pool, however, arises from a
detachment process (the AM3 M pathway) that favors a
greater rate of detachment at greater values ofx. In the
steady state these fluxes must be balanced and, as a result,
nAM(x, t) is spatially nonuniform.

Fig. 3 A shows the rapid increase in phosphorylation
during the early Ca21 transient (0–5 s), followed by a rapid
increase in forceF and instantaneous stiffnessK. The in-
crease inF andK correspond to the increasing number of
both AM and AMp bridges. BothF and K continue to
increase during the subsequent decrease in phosphorylation,
but at a much slower rate. From roughly 5–16 s, this slow
increase inF andK is associated with transitions of bridges
from the AMp pool to the AM pool (compare the second
and third panels of Fig. 2). The final relative populations of
the AMp and AM states depend upon the level of fractional
phosphorylation. In the example shown the steady-state
fractional phosphorylation is 0.375, for which the popula-
tion of AM bonds ultimately exceeds the AMp population.
This partitioning is typical for low levels of fractional
phosphorylation and corresponds to the “latch state” (Hai
and Murphy, 1988a).

Imposition of length fluctuations

As shown in Fig. 3,A–C, we imposed sinusoidal changes in
muscle length (DL 5 1% of L0) at t 5 180 s, followed by
a change in amplitude to 4% ofL0 at t 5 245 s. These
oscillatory perturbations in muscle length upset the isomet-
ric binding equilibrium and cause it to adapt to a new
perturbed equilibrium of myosin binding. The dynamic
steady state is characterized by fewer attached bridges,
lower mean force, lower stiffness, and higher mean ATP
consumption, even though the level of phosphorylation re-
mains unchanged. These effects are caused by increased
detachment of cross-bridges exposed to high detachment
rates when convected out of the attachment region (0, x ,
h). It is interesting to notice that the instantaneous force,F,
and ATPcycl substantially vary over the cycle, while the
instantaneous stiffness,K, and populations of AM and AMp
species vary only modestly (Fig. 3,A–C, t . 180 s). This
behavior is fully determined by the underlying cyclic
changes in the cross-bridge bond distributionsn(x, t), to
which we now turn.

Perturbed equilibria of myosin binding

Fig. 4 shows the underlying AMp and AM bond distribu-
tions as a function ofx at two amplitudes and two frequen-
cies. When subjected to very small tidal stretches (DL/h ,
0.5 or« , 2%), as shown in the left column of Fig. 4, the
middle portion of the steady-statenAM(x, t) andnAMp

(x, t)
bond distributions remains virtually the same as in the
steady isometric condition. This is because the cross-
bridges there never leave the region 0, x , h, where the
ratio fp/(fp 1 gp) is constant, and the effect of the much
slower detachment rateg (AM 3M) is small. However, the
left and right shoulders ofnAM(x, t) andnAMp

(x, t) sample
the regionsx , 0 andx . h for some fraction of the cycle,
and they are modified accordingly. The number of cross-
bridges in the shoulders decreases with increase of ampli-
tude of tidal stretch and/or increase of time that these
populations of cross-bridges spend during sampling these
high detachment rate regions.

For larger tidal stretches (x/h . 0.5 or« . 2%), as shown
in middle column of Fig. 4, all cross-bridges sample the
regionsx , 0 andx . h, where no attachment events occur
and overall detachment rate functions (in particulargp,
driving the AMp3 Mp transition) are high. This causes a
redistribution ofnAM(x, t) and nAMp

(x, t), with a general
depression in their overall levels, compared with the iso-
metric steady state. This reduction in the number of attached
bridges, taken together with the alterations of their distri-
butions, are consistent with the inhibition of force and
stiffness caused by imposed tidal changes in muscle length
shown in Fig. 3A. Indeed, at larger amplitudes (.4%), not
only the number of bridges is smaller, but also AMp(t) is
greater than AM(t) in contrast to both the isometric and low
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amplitude cases, where the AM(t) population systematically
exceeds the AMp(t) population (Fig. 3B, t , 245 s, Fig. 4,
left column).

This reversal of the AMp(t)/AM(t) ratio at larger length
fluctuations is caused by an increased overall rate of de-
tachment events for AMp and AM, and increased attach-
ment events for Mp compared with isometric steady condi-
tions or the small amplitude length variations. This is
consistent with higher average cycling rates of attachment
and detachment transitions, and with tidal stretch augmen-
tation of both hysteresivity and the rate of ATPcycl utiliza-
tion, as shown in Fig. 3C.

When the frequency of sinusoidal length variations is
small compared to the smallest typical rate constant (here
given by g1h, the typical detachment rate for the latch

bridges), both bond distributions,nAM(x, t) andnAMp
(x, t),

approach the steady-state distribution similar to the steady-
state shortening or lengthening velocity profiles. In that
circumstance the cyclic behavior approximates a sequence
of quasi-steady dynamic states for shortening or lengthening
(not shown). When the frequency is of orderg2 (the next
smallest rate), but still small compared to the rate constants
of rapid cycling cross bridges, onlynAMp

(x, t) exhibits the
quasi-steady-state distribution associated with the instanta-
neous muscle velocity, whilenAM(x, t) significantly varies
both in space and time. This is shown in Fig. 4, right
column, wherenAMp

(x, t) approximates the steady “box”
shape for all times except neart 5 0; the time of maximum
positive velocity. By contrast,nAM(x, t) displays a very
complex shape throughout the cycle. At higher frequencies

FIGURE 3 Evolution of mechanical and metabolic parameters during force development (0–180 s) and superimposed length variations of 1% (180–245
s) and 4% (245–305 s). (A) During force development, phosphorylation (black) peaks at;5 s, following the Ca21 transient (throughk1 andk6), while
muscle force,F (dark green), and instantaneous stiffness,K (pink), monotonically increase, more slowly than phosphorylation, and they stay at high levels.
Superimposed length variations of 1% and 4% did not affect levels of myosin phosphorylation, but progressively depressed both meanF and meanK, but
while instantaneousF fluctuated.50% of its isometric value, instantaneousK only modestly varied over its mean value. (B) State population transitions
of M (green), Mp (red), and AMp (black) occurred quickly and the muscle force and stiffness developed mostly through rapid cross-bridge cycling. Latch
bridges (AM,blue) developed later (from 5 to 15 s), significantly slowing the apparent cross-bridge cycling rates, and their contribution to the developed
force and stiffness gradually increased. Imposed strain variations decreased the numbers of both AMp and AM bridges, but the decrease of AMp was more
prominent at higher strains. Variation of all state populations was small compared toF, and almost unnoticeable for unphosphorylated M and AM species.
(C) Total ATP consumption (black line) first dropped, reflecting the early transient between M and Mp states, then increased following initial increase of
cross-bridge cycling rates (i.e., ATPcycl, cyan line), and reached a plateau at larger times (;180 s). Imposed length variations increased cycling rates and
ATPcycl of both AMp and AM bridges.
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FIGURE 4 The bond distributions of attached myosin populations AMp (dashed line), and AM (solid line) at eight distinctive times during a steady-state
cycle for three combinations of 1% and 4% stretch amplitudes, and 0.33 and 0.033 Hz frequencies.
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(larger thang2), nAM(x, t) convects back and forth during
each cycle with a shape that is almost time-invariant, while
nAMp

(x, t) varies in space and time (not shown). At very high
frequencies (much larger thangp2), however, bothnAM(x, t)
and nAMp

(x, t) have shapes that are approximately time-
invariant (not shown) and the muscle behaves as a purely
elastic system.

Dynamically determined contractile states

Force-length loops

The instantaneous force generated by either rapidly cycling
or latch bridges is proportional to the first moments of
nAMp

(x, t) andnAM(x, t), respectively. The total force is the
sum of the forces from these two populations. As remarked
above, at high frequencies the bond distribution shapes of
both attached species are approximately time-invariant and
simply shift back and forth during oscillation. The first
moments of these convecting distributions are therefore
proportional to the displacement, and thus all forces (partial
and total) vary nearly linearly with length. At moderate
frequencies and small amplitudes the latch bridge distribu-
tion, but not the rapidly cycling distribution, continues to
approximate a more or less fixed shape which, by the
argument above, contributes a force that is linear in dis-

placement. By contrast, the rapidly cycling cross-bridge
distribution changes substantially over time and displays a
correspondingly hysteretic force/length characteristic.
These two phenomena are shown in the upper left panel of
Fig. 5.

The physiological range of tidal stretches for airway
smooth muscle at the actin and myosin filament level is on
the order ofh (i.e., « 5 DL/L0 5 4%) (see Note 3) and the
range of frequencies is comparable to the detachment rates
(e.g., the detachment rate constantgp1 5 0.22 s21 is com-
parable to quiet breathing frequency in humans of 0.2 Hz, or
dogs of 0.30 Hz (Altman and Dittmer, 1974). The shapes of
nAM(x, t) and nAMp

(x, t) therefore approximate neither the
high nor low frequency limits (respectively a purely elastic
system or a constant force generator). As shown in Fig. 5,
middle and right panels, this results in clockwise force-
length loops that systematically fall below the static oper-
ating point (i.e., 100%F0). With respect to force, therefore,
the muscle state is dynamically determined. Similarly, just
as the forces arise from the first moment of the distribution
functions, the instantaneous stiffness is given by the zeroth
moment. In the physiologic range of amplitudes and fre-
quencies, these moments also fail to approximate either the
high or low frequency limits (both of which display constant
stiffness over the cycle). The bottom portion of Fig. 5 shows

FIGURE 5 Force–length loops and instantaneous stiffness–length loops of the partial contributions ofnAMp
(x, t) (dashed line) andnAM(x, t) (solid line)

for the same combinations of amplitudes and frequencies as in Fig. 4. Instantaneous force and stiffness are normalized to their isometric values.

2674 Mijailovich et al.

Biophysical Journal 79(5) 2667–2681



these cyclic variations in instantaneous stiffness, separated
into the contributions from AM and AMp populations.
Thus, it follows that with respect to stiffness as well, the
muscle state is now dynamically determined.

The total force and the total stiffness loops as a function
of strain amplitude for a frequency of 0.33 Hz (similar to
spontaneous breathing) are shown in Fig. 6 (left panels). In
this case, increasing tidal stretch amplitude systematically
decreased the mean total force and the slopes of the loops,
but increased the loop “fatness.” The instantaneous stiffness
dropped markedly with increasing stretch amplitude, but
varied little over cycle. For smaller strain amplitudes (up to
2% of L0), the force-strain loops are remarkably similar to
the loops measured in fully activated bovine tracheal muscle
set to a mean length ofL0 (compare to Fig. 1 in Fredberg et
al., 1997). However, for larger strains the HHM model
loops failed to predict banana-shaped loops. The origin of
this discrepancy may lie in the lack of details in Huxley’s
detachment rate functions at larger stretches (Harry et al.,
1990) and/or nonlinear serial elastic component (Seow and
Stephens, 1987). The right panels show families of loops in
physiological range of frequencies for (fixed) stretch am-
plitude of 4%. In this case, increasing frequency decreased
mean force and loop “fatness,” with little effect on loop
slope. Increasing frequency also induced a sharp drop in
instantaneous mean stiffness.

Fractional contributions of AMp and AM cross-bridges to
mean force, stiffness, and hysteresivity: stretch amplitude
and frequency-dependence

Fig. 7 shows the fractional contributions of AM and AMp
bridges to mean forceF, elastanceE, and hysteresivityh, in
the physiological range of airway smooth muscle stretch
amplitudes and frequencies. The dashed lines, showing total
F, E, andh, are the same as previously reported (Fredberg
et al., 1999). At low strains (« , 1%) AM contributed
significantly more toF andE compared to AMp. At higher
stretch amplitudes, the sharp drop in AM compared to the
modest decrease in AMp results in a decreased fractional
contribution of AM to F; indeed, the myosin species that
contributes most to mean force reverses between low- and
high-stretch amplitudes. The fractional contributions of AM
and AMp to the elastance,E, follow roughly the same
pattern, but do not reverse. It can also be shown that the net
elastance is, like the total force, a strictly additive function
of the independent contributions of AM and AMp. Unlike
the force and elastance, hysteresivity is the stiffness
weighted change of its two components, and it is not addi-
tive. As expected from the time constants, we see that atf 5
0.33 Hz, hysteresivity of AM is small, whereas hysteresivity
of AMp is substantial and grows with strain amplitude (see
Fig. 7, lower left panel).

FIGURE 6 Instantaneous force–length and stiffness–length loops (of both AM and AMp bridges) for a family of strain amplitudes at the physiologic
frequency of 0.33 Hz (left panels), and for a family of frequencies at 4% strain amplitude (right panels). Instantaneous force and stiffness are normalized
to their isometric values.
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The effect of frequency (at constant stretch amplitude of
4%) onF, E, andh is shown in Fig. 7, right panels. At this
particular amplitude, the fractional contributions of AM and
AMp to mean totalF are about equal; all three decrease
about twofold from low to middle frequencies (0.01–0.5
Hz), and then plateau for higherf. The fractional contribu-
tions of AM and AMp to overallE displayed a similar
plateau at high frequencies. By contrast, in the low- to
middle-frequency range, the contributions of AM and AMp
to elastance are strikingly different. Specifically, as fre-
quency decreases, the elastance is determined almost en-
tirely by AM latch bridges.

Both AM and AMp display a sharp drop in hysteresivity
with increasing frequency. This drop for the rapidly cycling

AMp bridges occurs about one order of magnitude higher in
frequency compared with the slower AM bridges. This is
consistent with, and indeed a necessary consequence of, the
fact that the rate constants for AMp bridges are about one
order of magnitude larger than the AM bridges. This sharp
increase inh and decrease inE with decreasing frequency is
typical for a non-equilibrium phase transition (from solid-
like or elastic-to-liquid-like or plastic behavior (Fredberg et
al., 1999; De Gennes, 1979).

It is very interesting to note that in the low frequency
range, the contributions of AMp and AM toE and h are
sharply different, as expected from their different rate con-
stants, but that their contributions to total mean forceF
remain roughly comparable. The origin of this is in the

FIGURE 7 Total (dotted line) and
fractional contributions of AM (solid
line) and AMp (dashed line) to the
mean forceF, elastanceE, and hys-
teresivity h as a function of strain
amplitudes for a frequency of 0.33
Hz (left panels), and as a function of
frequency for a strain amplitude of
4% (right panels). Mean force and
stiffness are normalized to their iso-
metric values.
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independent effects of time-average cross-bridge strain and
the variation of these strains over the cycle, which are
different for AMp and AM cross-bridges. In particular, at
low frequencies, the rapid cycling rates of AMp bridges
promote attachment and, on average, only modestly varying
mean strain over the cycle. Because AMp bridges quickly
adapt, keeping most of the cross-bridges attached in the
region (0, x , h), they function essentially as constant
force generators, with low elastance. By contrast, the slower
AM bridges cannot adapt as quickly to the imposed length
changes, and because of their slow detachment rate, their
mean strain varies significantly over the loop more or less
proportionally with imposed length variation. They are
more elastic with high elastance and low hysteresivity.

Myosin duty cycle and energy cost of
myosin binding

Myosin duty cycle

We define the myosin duty cycle to be the fraction of time
that an average myosin head is attached to actin during
steady-state length oscillations. This is equivalent to the
time average of the fraction of attached bridges and is

proportional to the time-average instantaneous muscle stiff-
ness. At fixed frequency the duty cycle or average fraction
of attached cross-bridges roughly parallels the behavior of
both elastance and mean force as functions of strain ampli-
tude, whereas at fixed strain amplitude, the duty cycle
parallels the behavior of mean force, but not elastance as
functions of frequency (Fig. 8A). Thus, the duty cycle is
rather more closely associated with mean force and average
instantaneous stiffness than with elastance. The reason for
this dissociation at low frequencies is that AMp bridges
have enough time to adapt to a new length (and with further
decrease in frequencies, also AM bridges), keeping most of
the cross-bridges attached in the region (0, x , h),
increasing duty cycle (also maintaining high mean force and
stiffness), in contrast to almost zero chord slope of AMp’s
force-length loops (for frequencies,0.033 Hz), that signif-
icantly decrease overall elastance.

Cycling rates and energy consumption

The ATPase activity computed from the net rate of bridge
cycling (exclusive of phosphorylation events) is shown as
ATPcycl, and this quantity, together with the additional ATP

FIGURE 8 For the same range of
stretch amplitudes and frequencies as
in Fig. 7, this figure shows (A) duty
cycle or average fraction of attached
cross-bridges (dotted line), mean force
(solid line), and elastance (dashed line)
within airway smooth muscle. (B) Rate
of external energy loss (power,solid
line) and time average of ATPase. Also
shown are ATPtot (dotted line), and
ATPcycl (dash-dot-dot line). Note that
ATPtot 5 ATPcycl 1 ATPphosp, where
ATPphosp is steady-state ATPase of
latch bridge maintenance. (C) Rate of
external energy loss (HHM prediction,
solid line), and that experimental
points (from Fredberg et al. (1997) and
Inouye (1999);triangles 6SD). Also
shown is ATPexcess (dashed line),
where ATPexcess5 ATPcycl 2 ATPiso

is the excess ATPase activity over AT-
Piso, the isometric steady-state cross-
bridge ATPase. Both power energy
loss and ATPase activity are calculated
per a myosin molecule (XB). The free
energy of ATP hydrolysis is assumed
to be 100 pNnm.
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consumption associated with phosphorylation events, de-
fines the total, shown as ATPtot (Fig. 8 B). The mechanical
work done by the imposed strains on the muscle per cycle is
equal to the area enclosed by the force/length loopD; the
power loss is given by the average work done on the muscle
per unit time, or in terms of our previously defined quanti-
ties, byDf 5 hEDL2fp. Note first that the ATP consump-
tion associated with phosphorylation events (i.e., ATPtot–
ATPcycl) is independent of strain amplitude or frequency.
Second, the mechanical power loss increases much more
sharply than ATPase activity as a function of strain ampli-
tude for fixed frequency, whereas the behaviors of the
power loss and ATPase are quite similar as a function of
frequency for fixed strain amplitude. It is important to note
that both chemical energy of ATPase and the mechanical
power loss are energy-dissipative processes.

The stretch-induced augmentation of the hysteresivity is
attributable in part to a direct mechanical effect at the level
of cyclic interaction of myosin and actin (Huxley, 1957;
Eisenberg and Hill, 1985). Compared with isometric con-
ditions, during tidal stretch the attached myosin molecule
spends some fraction of each period in regions along the
actin filament that favor rapid detachment (x , 0 and/orh ,
x). The greater the stretch amplitude, the greater would be
that fraction. Dashed lines in Fig. 8C show excess ATPase
(over the isometric) that is caused by tidal stretches
(ATPexcess5 ATPcycl 2 ATPiso). Increased time spent in
regions favoring detachment would, in turn, account for an
increased rate of bridge turnover and an elevated value ofh.

At small strains (« , 0.25%), ATPcycl utilization is al-
most entirely spent on isometric force maintenance, while
dissipated mechanical energy (;hEf«2) is small. At large
strains (« . 4%) andf ; 0.33 Hz, ATPcycl increased three
times in order to maintain the steady state, while dissipated
rate of energy imposed on muscle increased much more
with strain, exceeding not only ATPexcess, but also ATPcycl.
However, this excessive increase ofh at stretches above 4%
is not supported by previously reported experimental data
shown in Fig. 10A (from Fredberg et al., 1997, 1999),
whereh slightly decreases. Harry et al., 1990, also reported
experimental disagreement with Huxley-type simulations of
skeletal muscle lengthening. These discrepancies are most
likely associated with departures of the rate functions for
uxu . h, from those assumed in the simple model. We
conclude that the HHM model is accurate for perturbations
smaller than 4% of muscle length, but will need modifica-
tion at larger amplitudes.

In order to investigate the above uncertainty of the HHM
model rate constants at stretches above 4%, we also calcu-
lated power loss from the data shown in Fig. 10A (from
Fredberg et al., 1997, 1999); this is shown in Fig. 8C
(triangles). It agrees well with HHM predictions up to« 5
4%. At « 5 8%, however, we note two features. First,
external power loss computed by HHM theory significantly
overestimates the experimentally determined power loss.

Second, the experimentally determined power loss is itself
significantly higher than the HHM-computed ATPase ac-
tivity. These two observations imply only a weak coupling
between external mechanical work (power) and the chemi-
cal energy (cyclic ATPase) required for maintaining steady-
state contraction.

A comparison of the ATPase behavior (Fig. 8,B andC)
and the mean force and stiffness (or fraction attached)
behavior (Fig. 8A) as functions of both strain amplitude and
frequency shows that the depression of force and stiffness
associated with strain amplitude and frequency is accompa-
nied by increased ATPase activity. In other words, the
perturbed equilibrium requires external work to break the
cross-bridges, which in turn raises the myosin cycling rates
and therefore the biochemical energy required to maintain
that dynamic equilibrium.

Hysteresivity and cross-bridge cycling rates

We have suggested previously thath is a reasonable index
of cross-bridge cycling rates (Fredberg et al., 1996, 1997),
although Shen et al. (1997) have disputed that assertion. Fig.
8 C shows that an increase in cycling rate (or ATPexcess,
dashed line) is closely associated with external power loss
(solid line), for strains up to;3%. Beyond that point,
however, power loss increases even more sharply with
increasing strain, whereas ATPexcesstends to plateau. We
conclude thath is a good index of cross-bridge cycling rates
for small amplitudes, but departs at large strains, such as the
6% strain used by Shen et al. (1997). This observation
reconciles Shen’s finding with our previous reports.

We confirmed these ideas by examining the direct cor-
relation betweenh and cross-bridge cycling rates (i.e., loop
average of ATPcycl), by varying the level of myosin phos-
phorylation at fixed length fluctuations of 2% and frequency
of 0.33 Hz (Fig. 9). We found an approximately linear
relationship betweenh and cross-bridge cycling rates. It is
interesting to notice thath approaches a positive value of
;0.11 in the limit as myosin phosphorylation approaches
zero, while the cross-bridge cycling rate approaches 0. To
better understand this behavior at very low levels of phos-
phorylation, we investigated the relationship betweenhE
and ATPcycl (also shown in Fig. 9). The HHM model
predicts an almost linear relationship betweenhE and AT-
Pcycl, consistent with the observations of Fredberg et al.
(1996) in canine tracheal strips during force development.
Note that during force development, phosphorylation levels
in tracheal smooth muscle typically vary from almost zero
to a maximum value of 0.65 mol Pi/mol LC20, which spans
a substantial portion of range of phosphorylation levels used
in Fig. 9. Taken together, this analysis confirms a strong
linear correlation betweenh and cross-bridge cycling rates,
which is even stronger if ATPcycl is normalized by number
of attached cross-bridges, or equivalently,hE is compared
with ATPcycl (as explicitly shown in Fig. 9).
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Is Huxley’s two-state model sufficient to explain
the effect of imposed cyclic tidal stretches?

Force depression with increasing strain amplitude, as shown
in Fig. 7, is also observed in skeletal muscle (Rack and
Westbury, 1974), which has been explained by the mecha-
nism of Huxley’s two-state model (Zahalak, 1986). In Fig.
10 the numerical solutions for the explicit HHM four-state
latch regulatory scheme, integrated into Huxley’s sliding
filament model, are contrasted with experimental observa-
tions previously reported (Fredberg et al., 1997), and with
the exact solutions for a two-state myosin binding scheme
(J. P. Butler, Howard University, personal communication).
The rate constants in the two-state scheme were derived
directly from those in the four-state scheme after the method
of Hai and Murphy (1988b), and are thought to represent the
best two-state approximation of the explicit four-state
scheme at the prescribed level of phosphorylation. Both
theoretical schemes are seen to capture the essential features
of the data for steady-state oscillatory conditions, but only
for one particular level of (steady-state) phosphorylation
(Fig. 10 A). This is expected because Huxley’s original
model is only a two-state analysis and, as such, cannot
directly address the questions of multiple myosin binding
states, partitioning of attached myosin between phosphory-
lated (rapidly cycling), and unphosphorylated (slowly cy-
cling) species in smooth muscle (Hai and Murphy, 1988a),
or the stretch-induced changes of that partitioning (Fredberg
et al., 1999; Fredberg et al., in preparation). To investigate
this further, the predictions of the HHM and two-state
approximation model (with adjusted rate constants for par-
ticular steady-state levels of myosin phosphorylation by
using the method of Hai and Murphy, 1988b) were com-
pared for different levels of myosin phosphorylation (Fig.
10 B). Both models predict a similar increase of mean force
and elastance (similar to Murphy (1994) in isometric prep-

aration, but somewhat depressed by cycling stretches), and
h increases almost linearly. The two-state approximation
model consistently overestimated both mean force andE at
lower levels of myosin phosphorylation. Both models show
that coupling between Hai and Murphy’s four-state scheme
(1988a) and Huxley’s strain-dependent rate constants is
essential to describe the transient phosphorylation state (i.e.,
a continuously variable cross-bridge cycling rate). The im-
portant strength of the four-state model that is absent in any
two-state approximation is the ability to capture the dy-
namic features of varying levels of myosin phosphorylation
through its effect on bridge populations and ATP consump-
tion. Furthermore, the four myosin states are necessary to
account for the experimentally observed depression of
quick-release velocity-force curves generated at longer
times during isometric force development (Mijailovich et
al., 1998). Moreover, the two-state approximation (of the
four-state) model is not sufficient to accurately account for
the time course of the isotonic shortening velocity after
quick release because the internal resistance of the attached
cross-bridges also depends on distributions of attached
cross-bridges that can only be accounted for by the HHM
model.

Implications in bronchospasm

Experiments and HHM theory, taken together, suggest that
fluctuating mechanical strains imposed on the muscle are
transmitted to the myosin head and cause it to detach from
the actin filament much sooner than it would have in iso-
metric circumstances. This premature detachment pro-
foundly reduces the duty cycle of myosin. In the case of
airway smooth muscle subjected to the load fluctuations
associated with breathing, the duty cycle is typically re-
duced to;20% of its value in the unperturbed isometric

FIGURE 9 Hysteresivity, (h) on left y-axis (solid
line) and loss modulus (hE) (dashed line) as a function
of ATPcycl calculated different levels of phosphorylation
(from 0.05 on the left to 0.99 at right). Amplitude of
sinusoidal stretches was« 5 0.25% and frequency was
0.33 Hz. Loss modulus is normalized by isometric stiff-
ness,K0, at 100% of phosphorylation.
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steady state, and total numbers of bridges attached and
active force are depressed to a similar extent. Of the full
isometric force generating capacity of the muscle, therefore,
only a small fraction ever comes to bear to narrow the
airway. In asthma, however, it is believed that the load
fluctuations acting on myosin somehow become compro-
mised—perhaps due to inflammatory remodeling of the
airway wall. With dynamic unloading this potent inhibition
is removed and the muscle then generates the full comple-
ment of isometric steady-state force appropriate to the stim-
ulus. As a result, the airway can narrow to the point of
closure. This may explain why airway narrowing is limited
in the healthy lung but not in the asthmatic lung.

Several other mechanisms have been considered to ex-
plain the effects of tidal stretch on airway smooth muscle

mechanics; these include stretch-activated neural pathways,
stretch-activated prostanoid release, stretch-induced remod-
eling of the cytoskeleton, length-dependent changes in Ca21

sensitivity, length-dependent myosin phosphorylation, and
direct mechanical effects of stretch on bridge dynamics
(Pratusevich et al., 1995; Sasaki and Hoppin, 1979; Fred-
berg et al., 1999; Gunst et al., 1995; Mehta et al., 1996; Hai,
1991). Although all these factors may be important, a sys-
tem as superficially simple as Huxley’s two-state sliding
filament model embodies the essential changes of force,
stiffness, and hysteresivity that occur acutely with the onset
of sinusoidal stretch (Fig. 9). Therefore, features of Hux-
ley’s sliding filament model point to the dominant under-
lying mechanism of these stretch-induced changes; namely,
disruption of the spatial distribution of myosin binding
along the actin filament and the sustained departure of that
bond distribution from the equilibrium distribution that per-
tains in the isometric steady state (compare perturbed HHM
bond distributions in Fig. 4 and isometric steady state in
Fig. 2 D).

On the basis of these results, it seems reasonable to
conclude that the dynamically determined contractile states
that have been reported previously in airway smooth muscle
(Fredberg et al., 1997) are attributable in large part to the
direct effects of tidal stretch on bridge dynamics. Perturbed
equilibrium of myosin binding may have applicability in a
variety of smooth muscle systems that are routinely sub-
jected to tidal loading, but seems to explain in particular
why tidal stretch of airway smooth muscle is such a potent
endogenous relaxing mechanism.

NOTES

1. The force-displacements loops are closed only in oscillatory steady
state. However, during force development and the transients during
mean force adaptation to a different level of stretch amplitude, the
instantaneous forces at the beginning and at the end of a cycle are
somewhat different. Assuming linear change of the force difference
over time, the open loops are closed by removing this trend and
preserving the loop mean force.

2. The factor of 2 arises from the most parsimonious method of pre-
serving the spatial mean attachment and detachment fluxes (given by
the product of the respective rate functions and bond distributions).
It is exact when the bond distribution is uniform. During force
development the bond distributions are not uniform; the ratio of
mean flux to the product of mean rate function and mean bond
distribution departs from a constant and would correspond to this
factor ranging from 1.5 to 2.75 (see also Yu et al., 1997). However,
the force during force development is not too sensitive to this effect;
it differs from Hai and Murphy’s (1988a) results by,3%.

3. Cross-bridge displacement of magnitudeh corresponds to a whole
muscle strain of;« 5 4% if cross-bridge strain is taken to be 36%
of overall strain in order to account for the serial elastic component
(Mijailovich et al., 1996). If we also assume that muscle stretch
scales isotropically as the cube root of lung volume change (Hughes
et al., 1972), then normal tidal lung inflation from FRC would
correspond roughly to« 5 4%, a sigh from FRC would correspond
to « 5 12%, and inflation from FRC to total lung capacity would
correspond roughly to« 5 25% (Fredberg et al., 1997).

FIGURE 10 (A) Steady-state mean force, elastance, and hysteresivity as
a function of strain amplitude at a steady-state level of phosphorylation of
0.375 mol Pi/mol LC20. Experimental data from maximally activated
tracheal smooth muscle (from Fredberg et al. (1997) normalized to 100%
at « 5 0.25%, frequency 0.33 Hz) are shown by closed symbols6SD. The
predictions of HHM theory are shown in the solid lines, and the predictions
of the two-state Huxley (1957) model are shown in dashed lines. (B)
Steady-state mean force, elastance, and hysteresivity as a function of
myosin light chain phosphorylation at fixed frequency of 0.33 Hz and fixed
amplitude of« 5 2%. Mean force,F, and elastance,E, are normalized by
the respective isometric values at 100% phosphorylation.
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